Genotyping and investigation of antibiotic resistance genes of Acinetobacter baumannii isolates isolated from raw meat using RAPD-PCR method

Authors

  • Nadereh Askari Khashouia Department of Biotechnology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
  • Fatemeh Momtaz Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
  • Mahdieh Momtaz Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
  • Seyed Mehdi Ghasemi Department of Biotechnology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran

DOI:

https://doi.org/10.61882/jcbior.6.4.329

Keywords:

Genotyping, Antibiotic resistance, Acinetobacter baumannii, Carbapenemase, , RAPD-PCR

Abstract

Acinetobacter baumannii is a well-known pathogen linked to hospital infections and has recently been detected in raw meat from livestock and poultry, raising concerns over antibiotic resistance transmission to humans. Considering the extensive prevalence of multidrug-resistant A. baumannii in food sources, this study focused on genotyping A. baumannii isolates from meat and poultry samples and examining the presence of essential antibiotic resistance genes. As part of a cross-sectional study conducted in August 2023, researchers gathered 125 raw meat samples from livestock and poultry at various sites throughout Isfahan province, Iran. The A. baumannii isolates were identified by standard microbiological producers and examined for antimicrobial susceptibility using the disk diffusion technique. Their resistance patterns were analyzed through RAPD-PCR. Totally, 22 A. baumannii isolates from raw meat were recovered. All isolates exhibited resistance to at least two antibiotics. Strains derived from livestock showed high resistance to tetracycline (72.7%), whereas strains from poultry exhibited the highest resistance to both tetracycline (90.9%), and gentamicin (81.8%). In both poultry and livestock isolates, tetA was the most frequently detected resistance gene at 90.1 and 81.8%, respectively. While, the blaoxa-24-like genes were present at one isolate with a rate of 9.1%. Genotyping grouped the isolates into five RAPD profiles, with genetic similarities ranging from 74%-100%, indicating notable diversity despite widespread resistance. These findings highlight the emergence of antibiotic-resistant A. baumannii in meat products and underscore the potential risk of resistance gene transfer from animals to humans, emphasizing the need for further research and public health strategies.

References

1. Bantawa K, Rai K, Subba Limbu D, Khanal H. Food-borne bacterial pathogens in marketed raw meat of Dharan, eastern Nepal. BMC Res Notes. 2018;11(1):618

DOI: 10.1186/s13104-018-3722-x PMID: 30157961

2. Askari N, Momtaz H, Tajbakhsh E. Prevalence and phenotypic pattern of antibiotic resistance of Acinetobacter baumannii isolated from different types of raw meat samples in Isfahan, Iran. Vet Med Sci. 2020;6(1):147-153

DOI: 10.1002/vms3.199 PMID: 31576672

3. Tavakol M, Momtaz H, Mohajeri P, Shokoohizadeh L, Tajbakhsh E. Genotyping and distribution of putative virulence factors and antibiotic resistance genes of Acinetobacter baumannii strains isolated from raw meat. Antimicrob Resist Infect Control. 2018;7:120 DOI: 10.1186/s13756-018-0405-2 PMID: 30323923

4. Askari N, Momtaz H, Tajbakhsh E. Acinetobacter baumannii in sheep, goat, and camel raw meat: virulence and antibiotic resistance pattern. AIMS Microbiol. 2019;5(3):272-284

DOI: 10.3934/microbiol.2019.3.272 PMID: 31663061

5. Elbehiry A, Marzouk E, Abdeen E, Al-Dubaib M, Alsayeqh A, Ibrahem M, et al. Proteomic characterization and discrimination of Aeromonas species recovered from meat and water samples with a spotlight on the antimicrobial resistance of Aeromonas hydrophila. Microbiologyopen. 2019;8(11):e782

DOI: 10.1002/mbo3.782 PMID: 30614207

6. Elbehiry A, Marzouk E, Moussa IM, Dawoud TM, Mubarak AS, Al-Sarar D, et al. Acinetobacter baumannii as a community foodborne pathogen: Peptide mass fingerprinting analysis, genotypic of biofilm formation and phenotypic pattern of antimicrobial resistance. Saudi J Biol Sci. 2021;28(1):1158-1166 DOI: 10.1016/j.sjbs.2020.11.052 PMID: 33424412

7. Dhama K, Karthik K, Chakraborty S, Tiwari R, Kapoor S, Kumar A, et al. Loop-mediated isothermal amplification of DNA (LAMP): a new diagnostic tool lights the world of diagnosis of animal and human pathogens: a review. Pak J Biol Sci. 2014;17(2):151-66

DOI: 10.3923/pjbs.2014.151.166 PMID: 24783797

8. Marí-Almirall M, Cosgaya C, Pons MJ, Nemec A, Ochoa TJ, Ruiz J, et al. Pathogenic Acinetobacter species including the novel Acinetobacter dijkshoorniae recovered from market meat in Peru. Int J Food Microbiol. 2019;305:108248

DOI: 10.1016/j.ijfoodmicro.2019.108248 PMID: 31226568

9. Itani R, Khojah HMJ, Karout S, Rahme D, Hammoud L, Awad R, et al. Acinetobacter baumannii: assessing susceptibility patterns, management practices, and mortality predictors in a tertiary teaching hospital in Lebanon. Antimicrob Resist Infect Control. 2023;12(1):136 DOI: 10.1186/s13756-023-01343-8 PMID: 38031181

10. Roy S, Chowdhury G, Mukhopadhyay AK, Dutta S, Basu S. Convergence of Biofilm Formation and Antibiotic Resistance in Acinetobacter baumannii Infection. Front Med (Lausanne). 2022;9:793615

DOI: 10.3389/fmed.2022.793615 PMID: 35402433

11. Raheem Hassooni H, Ibrahim Ahmed R, Alzubaidy ZM, Hassan Alhusseiny A. Isolation and Molecular Identification of Acinetobacter baumannii From Urinary Tract Infection in Diyala Province, Iraq. Iran J Med Microbiol. 2024;18(3):200-208

URL: http://ijmm.ir/article-1-2399-en.html

12. Liu Y, Ding L, Han R, Zeng L, Li J, Guo Y, et al. Assessment of cefiderocol disk diffusion versus broth microdilution results when tested against Acinetobacter baumannii complex clinical isolates. Microbiol Spectr. 2023;11(6):e0535522

DOI: 10.1128/spectrum.05355-22 PMID: 37855593

13. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. 34th ed. CLSI Supplement M100. 2024

URL: https://clsi.org/shop/standards/m100/

14. Dashti AA, Jadaon MM, Abdulsamad AM, Dashti HM. Heat treatment of bacteria: a simple method of DNA extraction for molecular techniques. Kuwait Med J. 2009;41(2):117-22 URL:https://applications.emro.who.int/imemrf/kmj_2009_41_2_117.pdf

15. Khurshid M, Rasool MH, Ashfaq UA, Aslam B, Waseem M, Ali MA, et al. Acinetobacter baumannii Sequence Types Harboring Genes Encoding Aminoglycoside Modifying Enzymes and 16SrRNA Methylase; a Multicenter Study from Pakistan. Infect Drug Resist. 2020;13:2855-2862 DOI: 10.2147/IDR.S260643 PMID: 32884309

16. Nourbakhsh F, Rajai M, Momtaz H. Antibiotic resistance and carriage integron classes in clinical isolates of Acinetobacter baumannii from Isfahan hospitals, Iran. Zahedan J Res Med Sci. 2017;19(1):e6009 URL: https://zjrms.com/en/articles/6009.html

17. Wiedmann-al-Ahmad M, Tichy HV, Schön G. Characterization of Acinetobacter type strains and isolates obtained from wastewater treatment plants by PCR fingerprinting. Appl Environ Microbiol. 1994;60(11):4066-71

DOI: 10.1128/aem.60.11.4066-4071.1994 PMID: 7993093

18. Carvalheira A, Silva J, Teixeira P. Lettuce and fruits as a source of multidrug resistant Acinetobacter spp. Food Microbiol. 2017;64:119-125

DOI: 10.1016/j.fm.2016.12.005 PMID: 28213015

19. Wu HJ, Xiao ZG, Lv XJ, Huang HT, Liao C, Hui CY, et al. Drug-resistant Acinetobacter baumannii: From molecular mechanisms to potential therapeutics (Review). Exp Ther Med. 2023;25(5):209 DOI: 10.3892/etm.2023.11908 PMID: 37090073

20. Moosavian M, Ahmadi K, Shoja S, Mardaneh J, Shahi F, Afzali M. Antimicrobial resistance patterns and their encoding genes among clinical isolates of Acinetobacter baumannii in Ahvaz, Southwest Iran. MethodsX. 2020;7:101031

DOI: 10.1016/j.mex.2020.101031 PMID: 32983919

21. Liu C, Chang Y, Xu Y, Luo Y, Wu L, Mei Z, et al. Distribution of virulence-associated genes and antimicrobial susceptibility in clinical Acinetobacter baumannii isolates. Oncotarget. 2018;9(31):21663-21673

DOI: 10.18632/oncotarget.24651 PMID: 29774093

22. Mohammadi M, Bahrami N, Faghri J. The evaluation of antibiotic resistance pattern and frequency of blaVIM and blaNDM genes in isolated Acinetobacter baumannii from hospitalized patients in Isfahan and Shahrekord. Razi J Med Sci. 2020;27(4):143-156 URL: http://rjms.iums.ac.ir/article-1-5827-en.html

23. Santajit S, Bhoopong P, Kong-Ngoen T, Tunyong W, Horpet D, Paehoh-Ele W, et al. Phenotypic and Genotypic Investigation of Carbapenem-Resistant Acinetobacter baumannii in Maharaj Nakhon Si Thammarat Hospital, Thailand. Antibiotics (Basel). 2023;12(3):580

DOI: 10.3390/antibiotics12030580 PMID: 36978447

24. Shali AAK, Jalal PJ, Arif SK. Dissemination and Genetic Relatedness of Multidrug-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Isolates from a Burn Hospital in Iraq. Can J Infect Dis Med Microbiol. 2022;2022:8243192 DOI: 10.1155/2022/8243192 PMID: 35669527

25. Sarafan Sadeghi A, Ansari N, Khademi F, Mir Nejad R, Zamanzad B. Drug Resistance Patterns and Genotyping of Acinetobacter baumannii Strains Isolated from Patients Admitted to Shahrekord Teaching Hospitals Using REP-PCR. J Ardabil Univ Med Sci. 2019;19(1):30-40

URL: http://jarums.arums.ac.ir/article-1-1654-en.html

Downloads

Published

2025-12-29

Issue

Section

Original articles

How to Cite

Genotyping and investigation of antibiotic resistance genes of Acinetobacter baumannii isolates isolated from raw meat using RAPD-PCR method. (2025). Journal of Current Biomedical Reports, 6(4), 128-134. https://doi.org/10.61882/jcbior.6.4.329

Similar Articles

1-10 of 48

You may also start an advanced similarity search for this article.