Integron profiles and sulfonamide resistance genes in Klebsiella pneumoniae isolated from diabetic patients with urinary tract infection
DOI:
https://doi.org/10.61882/jcbior.6.4.335Keywords:
Klebsiella pneumoniae, Sulfonamide, Integrons, Urinary tract infectionAbstract
Klebsiella pneumoniae is an opportunistic pathogen and an important cause of pneumonia, bacteremia and urinary tract infection (UTI). K. pneumoniae infection is historically associated with diabetes. Therefore, the aim of the present study was to determine the Integron types and sulfonamide resistance genes in K. pneumoniae isolated from diabetic patients with urinary tract infection. In this descriptive-cross-sectional study, 90 K. pneumoniae isolates were collected from urine samples of diabetic patients. Antibiotic susceptibility testing was performed using disk diffusion methods. Detection of the sulfonamide resistance determinants and integron types were carried out through PCR. In this study, 90 K. pneumoniae isolates were obtained from diabetic patients with UTI, with a mean age of 69.8 ± 9.2 years; 58.9% were female. Antibiotic resistance was highest to gentamicin (70%) and ceftriaxone (65.5%), and lowest to imipenem (32.2%), with significant resistance also observed to trimethoprim-sulfamethoxazole (50%). Among the isolates, sul1 (91.8%) and intI (67%) were the most prevalent resistance genes followed by dfrA1 (63%) and sul2 (52%). The dfrA5 gene was not detected in any of the isolates. The predominance of sul1 and class I integrons among K. pneumoniae isolates from diabetic patients with UTI underscores their key role in the spread of multidrug resistance. These findings emphasize the importance of targeted antimicrobial stewardship, infection control, and monitoring strategies to prevent treatment failure in this high-risk population.
References
1. Liu Y, Huang L, Cai J, Zhu H, Li J, Yu Y, et al. Clinical characteristics of respiratory tract infection caused by Klebsiella pneumoniae in immunocompromised patients: a retrospective cohort study. Front Cell Infect Microbiol. 2023;13:1137664. DOI: 10.3389/fcimb.2023.1137664 PMID: 37662019
2. Cristea OM, Avrămescu CS, Bălășoiu M, Popescu FD, Popescu F, Amzoiu MO. Urinary tract infection with Klebsiella pneumoniae in Patients with Chronic Kidney Disease. Curr Health Sci J. 2017;43(2):137-148. DOI: 10.12865/CHSJ.43.02.06 PMID: 30595869
3. Alemu M, Belete MA, Gebreselassie S, Belay A, Gebretsadik D. Bacterial Profiles and Their Associated Factors of Urinary Tract Infection and Detection of Extended Spectrum Beta-Lactamase Producing Gram-Negative Uropathogens Among Patients with Diabetes Mellitus at Dessie Refe1rral Hospital, Northeastern Ethiopia. Diabetes Metab Syndr Obes. 2020;13:2935-2948.
DOI: 10.2147/DMSO.S262760 PMID: 32922054
4. Razavi M, Marathe NP, Gillings MR, Flach CF, Kristiansson E, Joakim Larsson DG. Discovery of the fourth mobile sulfonamide resistance gene. Microbiome. 2017;5(1):160.
DOI: 10.1186/s40168-017-0379-y PMID: 29246178
5. Li B, Hu Y, Wang Q, Yi Y, Woo PC, Jing H, et al. Structural diversity of class 1 integrons and their associated gene cassettes in Klebsiella pneumoniae isolates from a hospital in China. PLoS One. 2013;8(9):e75805. DOI: 10.1371/journal.pone.0075805 PMID: 24098729
6. Sánchez-Osuna M, Cortés P, Barbé J, Erill I. Origin of the Mobile Di-Hydro-Pteroate Synthase Gene Determining Sulfonamide Resistance in Clinical Isolates. Front Microbiol. 2019;9:3332. DOI: 10.3389/fmicb.2018.03332 PMID: 30687297
7. Bassetti M, Righi E, Carnelutti A, Graziano E, Russo A. Multidrug-resistant Klebsiella pneumoniae: challenges for treatment, prevention and infection control. Expert Rev Anti Infect Ther. 2018;16(10):749-761.
DOI: 10.1080/14787210.2018.1522249 PMID: 30207815
8. Kashefieh M, Hosainzadegan H, Baghbanijavid S, Ghotaslou R. The Molecular Epidemiology of Resistance to Antibiotics among Klebsiella pneumoniae Isolates in Azerbaijan, Iran. J Trop Med. 2021;2021:9195184.
DOI: 10.1155/2021/9195184 PMID: 34335793
9. Sedighi P, Zarei O, Karimi K, Taheri M, Karami P, et al. Molecular typing of Klebsiella pneumoniae clinical isolates by Enterobacterial repetitive intergenic consensus polymerase chain reaction. International Journal of Microbiology. 2020;2020(1):8894727. DOI: 10.1155/2020/8894727
10. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; 35th Informational Supplement. M100-S35. Wayne, PA: Clinical and Laboratory Standards Institute; 2025.
URL: https://clsi.org/shop/standards/m100/
11. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. DOI: 10.1111/j.1469-0691.2011.03570.x PMID: 21793988
12. Talieh Mostaghimi, Pournajaf A, Bijani A, Mohammadi M, Rajabnia M, et al. Phylogenetic analysis, biofilm formation, antimicrobial resistance and relationship between these characteristics in Uropathogenic Escherichia coli. Mol Biol Rep. 2024;51(1):327.
DOI: 10.1007/s11033-023-09031-x PMID: 38393446
13. Arabi H, Pakzad I, Nasrollahi A, Hosainzadegan H, Azizi Jalilian F, Taherikalani M, et al. Sulfonamide Resistance Genes (sul) M in Extended Spectrum Beta Lactamase (ESBL) and Non-ESBL Producing Escherichia coli Isolated From Iranian Hospitals. Jundishapur J Microbiol. 2015;8(7):e19961.
DOI: 10.5812/jjm.19961v2 PMID: 26421132
14. Azizian M, Pakzad I, Arabi H, Nasrollahi A, Hosainzadegan H, Azizi Jalilian F, et al. Prevalence of dfr, int and sul Genes in Cotrimoxazole Resistance Klebsiella pneumoniae Isolated from Two Hospitals of Iran. J Pure Appl Microbiol. 2014;8:2655-8. URL: https://microbiologyjournal.org/prevalence-of-dfr-int-and-sul-genes-in-cotrimoxazole-resistance-klebsiella-pneumoniae-isolated-from-two-hospitals-of-iran/
15. Firoozeh F, Mahluji Z, Shams E, Khorshidi A, Zibaei M. New Delhi metallo-$beta$-lactamase-1-producing Klebsiella pneumoniae isolates in hospitalized patients in Kashan, Iran. Iran J Microbiol. 2017;9(5):283-287. PMID: 29296273
16. Wang L, Zhu M, Yan C, Zhang Y, He X, Wu L, et al. Class 1 integrons and multiple mobile genetic elements in clinical isolates of the Klebsiella pneumoniae complex from a tertiary hospital in eastern China. Front Microbiol. 2023;14:985102.
DOI: 10.3389/fmicb.2023.985102 PMID: 369501572
17. Jahanbin F, Marashifard M, Jamshidi S, Zamanzadeh M, Dehshiri M, Malek Hosseini SAA, et al. Investigation of Integron-Associated Resistance Gene Cas3settes in Urinary Isolates of Klebsiella pneumoniae in Yasuj, Southwestern Iran During 2015-16. Avicenna J Med Biotechnol. 2020;12(2):124-131.
PMID: 32431797
18. Mafulul LI, Onwuliri FC, Onyimba IA, et al. Integron-Associated Multidrug Resistance among Gram-Negative Bacteria: A Review. Int J Microbiol Infect Dis. 2018;2(4):1-6.
DOI: 10.33425/2639-9458.1041
19. Omar FH, Ibrahim AH. The prevalence of integron class I and II among multi-drug resistance producing Klebsiella pneumoniae. Iraqi Journal of Agricultural Sciences. 2023;54(3):619-29.
DOI: 10.36103/ijas.v54i3.1775
20. Khamesipour F, Tajbakhsh E. Analyzed the genotypic and phenotypic antibiotic resistance patterns of Klebsiella pneumoniae isolated from clinical samples in Iran. Biomedical Research. 2016;27(4):1017-1026.
URL: http://eprints.medsab.ac.ir/id/eprint/586
21. Delarampour A, Ghalehnoo ZR, Khademi F, Vaez H. Antibiotic resistance patterns and prevalence of class I, II and III Integrons among clinical isolates of Klebsiella pneumoniae. Infez Med. 2020;28(1):64-69. PMID: 32172262
Downloads
Published
Issue
Section
License
Copyright (c) 2025 The Author(s)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



